Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
3.
Crit Care ; 27(1): 69, 2023 02 23.
Article in English | MEDLINE | ID: covidwho-2284552

ABSTRACT

BACKGROUND: Gut microbiota alterations have been reported in hospitalized COVID-19 patients, with reduced alpha diversity and altered microbiota composition related to respiratory failure. However, data regarding gut microbiota and mortality are scarce. METHODS: Rectal swabs for gut microbiota analyses were collected within 48 h after hospital admission (baseline; n = 123) and three-month post-admission (n = 50) in a subset of patients included in the Norwegian SARS-CoV2 cohort study. Samples were analysed by sequencing the 16S rRNA gene. Gut microbiota diversity and composition at baseline were assessed in relation to need for intensive care unit (ICU) admission during hospitalization. The primary objective was to investigate whether the ICU-related gut microbiota was associated with 60-day mortality. RESULTS: Gut microbiota diversity (Shannon index) at baseline was lower in COVID-19 patients requiring ICU admission during hospitalization than in those managed in general wards. A dysbiosis index representing a balance of enriched and reduced taxa in ICU compared with ward patients, including decreased abundance of butyrate-producing microbes and enrichment of a partly oral bacterial flora, was associated with need of ICU admission independent of antibiotic use, dexamethasone use, chronic pulmonary disease, PO2/FiO2 ratio, C-reactive protein, neutrophil counts or creatinine levels (adjusted p < 0.001). The ICU-related dysbiosis index at baseline correlated with systemic inflammation and was associated with 60-day mortality in univariate analyses (Hazard ratio 3.70 [2.00-8.6], p < 0.001), as well as after separate adjustment for covariates. At the three-month follow-up, the dysbiosis index remained elevated in ICU patients compared with ward patients (adjusted p = 0.007). CONCLUSIONS: Although our data should be regarded as exploratory due to low number of clinical end points, they suggest that gut microbiota alterations during hospitalization could be related to poor prognosis after severe COVID-19. Larger studies of gut involvement during COVID-19 in relation to long-term clinical outcome are warranted. Trial registration NCT04381819 . Retrospectively registered May 11, 2020.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , Cohort Studies , Dysbiosis/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Viral , SARS-CoV-2/genetics , Hospitalization
5.
Infect Dis (Lond) ; 54(12): 918-923, 2022 12.
Article in English | MEDLINE | ID: covidwho-1997035

ABSTRACT

BACKGROUND: The lungs are the organ most likely to sustain serious injury from coronavirus disease 2019 (COVID-19). However, the mechanisms for long-term complications are not clear. Patients with severe COVID-19 have shorter telomere lengths and higher levels of cellular senescence, and we hypothesized that circulating levels of the telomere-associated senescence markers chitotriosidase, ß-galactosidase, cathelicidin antimicrobial peptide and stathmin 1 (STMN1) were elevated in hospitalized COVID-19 patients compared to controls and could be associated with pulmonary sequelae following hospitalization. METHODS: Ninety-seven hospitalized patients with COVID-19 who underwent assessment for pulmonary sequelae at three-month follow-up were included in the study. ß-Galactosidase and chitotriosidase were analysed by fluorescence; stathmin 1 and cathelicidin antimicrobial peptide were analysed by enzyme immuno-assay in plasma samples from the acute phase and after three-months. In addition, the classical senescence markers cyclin-dependent kinase inhibitor 1A and 2A were analysed by enzyme immuno-assay in peripheral blood mononuclear cell lysate after three months. RESULTS: We found elevated plasma levels of the senescence markers chitotriosidase and stathmin 1 in patients three months after hospitalization with COVID-19, and these markers in addition to protein levels of cyclin-dependent kinase inhibitor 2A in cell lysate, were associated with pulmonary pathology. The elevated levels of these markers seem to reflect both age-dependent (chitotriosidase) and age-independent (stathmin 1, cyclin-dependent kinase inhibitor 2A) processes. CONCLUSIONS: We suggest that accelerated ageing or senescence could be important for long-term pulmonary complications of COVID-19, and our findings may be relevant for future research exploring the pathophysiology and management of these patients.


Subject(s)
COVID-19 , Humans , COVID-19/complications , Stathmin , Leukocytes, Mononuclear/metabolism , Cellular Senescence/physiology , beta-Galactosidase/metabolism , Biomarkers , Disease Progression , Cyclin-Dependent Kinases
7.
J Infect Dis ; 2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-1961059

ABSTRACT

BACKGROUND: Immune dysregulation is a major factor in the development of severe Covid-19. The homeostatic chemokines CCL19 and CCL21 have been implicated as mediators of tissue inflammation, but data on their regulation in SARS-CoV-2 infection is limited. We thus investigated the levels of these chemokines in Covid-19 patients. METHODS: Serial blood samples were obtained from patients hospitalized with Covid-19 (n = 414). Circulating CCL19 and CCL21 levels during hospitalization and three-month follow-up were analyzed. In vitro assays and analysis of RNAseq data from public repositories were performed to further explore possible regulatory mechanisms. RESULTS: A consistent increase in circulating levels of CCL19 and CCL21 was observed, with high levels correlating with disease severity measures, including respiratory failure, need for intensive care, and 60-day all-cause mortality. High levels of CCL21 at admission were associated with persisting impairment of pulmonary function at the three-month follow-up. CONCLUSIONS: Our findings highlight CCL19 and CCL21 as markers of immune dysregulation in Covid-19. This may reflect aberrant regulation triggered by tissue inflammation, as observed in other chronic inflammatory and autoimmune conditions. Determination of the source and regulation of these chemokines and their effects on lung tissue is warranted to further clarify their role in Covid-19.

8.
J Intern Med ; 291(6): 801-812, 2022 06.
Article in English | MEDLINE | ID: covidwho-1714240

ABSTRACT

BACKGROUND: Although coronavirus disease 2019 (COVID-19) is primarily a respiratory infection, mounting evidence suggests that the gastrointestinal tract is involved in the disease, with gut barrier dysfunction and gut microbiota alterations being related to disease severity. Whether these alterations persist and are related to long-term respiratory dysfunction remains unknown. METHODS: Plasma was collected during hospital admission and after 3 months from the NOR-Solidarity trial (n = 181) and analyzed for markers of gut barrier dysfunction and inflammation. At the 3-month follow-up, pulmonary function was assessed by measuring the diffusing capacity of the lungs for carbon monoxide (DLCO ). Rectal swabs for gut microbiota analyses were collected (n = 97) and analyzed by sequencing the 16S rRNA gene. RESULTS: Gut microbiota diversity was reduced in COVID-19 patients with respiratory dysfunction, defined as DLCO below the lower limit of normal 3 months after hospitalization. These patients also had an altered global gut microbiota composition, with reduced relative abundance of 20 bacterial taxa and increased abundance of five taxa, including Veillonella, potentially linked to fibrosis. During hospitalization, increased plasma levels of lipopolysaccharide-binding protein (LBP) were strongly associated with respiratory failure, defined as pO2 /fiO2 (P/F ratio) <26.6 kPa. LBP levels remained elevated during and after hospitalization and were associated with low-grade inflammation and respiratory dysfunction after 3 months. CONCLUSION: Respiratory dysfunction after COVID-19 is associated with altered gut microbiota and persistently elevated LBP levels. Our results should be regarded as hypothesis generating, pointing to a potential gut-lung axis that should be further investigated in relation to long-term pulmonary dysfunction and long COVID.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , COVID-19/complications , Clinical Trials as Topic , Humans , Inflammation , RNA, Ribosomal, 16S/genetics , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
9.
Platelets ; 33(4): 640-644, 2022 May 19.
Article in English | MEDLINE | ID: covidwho-1713376

ABSTRACT

Thromboembolic events are frequent and associated with poor outcome in severe COVID-19 disease. Anti-PF4/polyanion antibodies are related to heparin-induced thrombocytopenia (HIT) and thrombus formation, but data on these antibodies in unselected COVID-19 populations are scarce. We assessed the presence of anti-PF4/polyanion antibodies in prospectively collected serum from an unselected cohort of hospitalized COVID-19 patients and evaluated if elevated levels could give prognostic information on ICU admission and respiratory failure (RF), were associated with markers of inflammation, endothelial activation, platelet activation, coagulation and fibrosis and were associated with long-term pulmonary CT changes. Five out of 65 patients had anti-PF4/polyanion reactivity with OD ≥0.200. These patients had more severe disease as reflected by ICU admission without any evidence of HIT. They also had signs of enhanced inflammation and fibrinogenesis as reflected by elevated ferritin and osteopontin, respectively, during the first 10 days of hospitalization. Increased ferritin and osteopontin persisted in these patients at 3 months follow-up, concomitant with pulmonary CT pathology. Our finding shows that the presence of anti-PF4/polyanion antibodies in unselected hospitalized COVID-19 patients was not related to HIT, but was associated with disease severity, inflammation, and pulmonary pathology after 3 months.


Subject(s)
COVID-19 , Thrombocytopenia , Anticoagulants/adverse effects , Ferritins/adverse effects , Heparin/adverse effects , Humans , Inflammation , Osteopontin/adverse effects , Platelet Factor 4 , Severity of Illness Index , Thrombocytopenia/diagnosis
10.
Ann Intern Med ; 174(9): 1261-1269, 2021 09.
Article in English | MEDLINE | ID: covidwho-1547664

ABSTRACT

BACKGROUND: New treatment modalities are urgently needed for patients with COVID-19. The World Health Organization (WHO) Solidarity trial showed no effect of remdesivir or hydroxychloroquine (HCQ) on mortality, but the antiviral effects of these drugs are not known. OBJECTIVE: To evaluate the effects of remdesivir and HCQ on all-cause, in-hospital mortality; the degree of respiratory failure and inflammation; and viral clearance in the oropharynx. DESIGN: NOR-Solidarity is an independent, add-on, randomized controlled trial to the WHO Solidarity trial that included biobanking and 3 months of clinical follow-up (ClinicalTrials.gov: NCT04321616). SETTING: 23 hospitals in Norway. PATIENTS: Eligible patients were adults hospitalized with confirmed SARS-CoV-2 infection. INTERVENTION: Between 28 March and 4 October 2020, a total of 185 patients were randomly assigned and 181 were included in the full analysis set. Patients received remdesivir (n = 42), HCQ (n = 52), or standard of care (SoC) (n = 87). MEASUREMENTS: In addition to the primary end point of WHO Solidarity, study-specific outcomes were viral clearance in oropharyngeal specimens, the degree of respiratory failure, and inflammatory variables. RESULTS: No significant differences were seen between treatment groups in mortality during hospitalization. There was a marked decrease in SARS-CoV-2 load in the oropharynx during the first week overall, with similar decreases and 10-day viral loads among the remdesivir, HCQ, and SoC groups. Remdesivir and HCQ did not affect the degree of respiratory failure or inflammatory variables in plasma or serum. The lack of antiviral effect was not associated with symptom duration, level of viral load, degree of inflammation, or presence of antibodies against SARS-CoV-2 at hospital admittance. LIMITATION: The trial had no placebo group. CONCLUSION: Neither remdesivir nor HCQ affected viral clearance in hospitalized patients with COVID-19. PRIMARY FUNDING SOURCE: National Clinical Therapy Research in the Specialist Health Services, Norway.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/virology , Hydroxychloroquine/therapeutic use , Viral Load/drug effects , Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , Antibodies, Viral/blood , Biomarkers/blood , COVID-19/complications , COVID-19/mortality , Cause of Death , Female , Hospital Mortality , Humans , Inflammation/virology , Male , Middle Aged , Norway/epidemiology , Oropharynx/virology , Respiratory Insufficiency/virology , SARS-CoV-2/immunology , Severity of Illness Index , Standard of Care , Treatment Outcome
11.
Sci Rep ; 11(1): 23205, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1545647

ABSTRACT

The association between pulmonary sequelae and markers of disease severity, as well as pro-fibrotic mediators, were studied in 108 patients 3 months after hospital admission for COVID-19. The COPD assessment test (CAT-score), spirometry, diffusion capacity of the lungs (DLCO), and chest-CT were performed at 23 Norwegian hospitals included in the NOR-SOLIDARITY trial, an open-labelled, randomised clinical trial, investigating the efficacy of remdesivir and hydroxychloroquine (HCQ). Thirty-eight percent had a CAT-score ≥ 10. DLCO was below the lower limit of normal in 29.6%. Ground-glass opacities were present in 39.8% on chest-CT, parenchymal bands were found in 41.7%. At admission, low pO2/FiO2 ratio, ICU treatment, high viral load, and low antibody levels, were predictors of a poorer pulmonary outcome after 3 months. High levels of matrix metalloproteinase (MMP)-9 during hospitalisation and at 3 months were associated with persistent CT-findings. Except for a negative effect of remdesivir on CAT-score, we found no effect of remdesivir or HCQ on long-term pulmonary outcomes. Three months after hospital admission for COVID-19, a high prevalence of respiratory symptoms, reduced DLCO, and persistent CT-findings was observed. Low pO2/FiO2 ratio, ICU-admission, high viral load, low antibody levels, and high levels of MMP-9 were associated with a worse pulmonary outcome.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19 Drug Treatment , Hydroxychloroquine/adverse effects , Lung Diseases/pathology , Matrix Metalloproteinase 9/metabolism , SARS-CoV-2/drug effects , Viral Load , Adenosine Monophosphate/adverse effects , Aged , Alanine/adverse effects , Antibody Formation , Antimalarials/adverse effects , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , COVID-19/virology , Female , Hospitalization , Humans , Lung Diseases/chemically induced , Lung Diseases/enzymology , Lung Diseases/virology , Male , Middle Aged , Severity of Illness Index
13.
J Neurol ; 268(10): 3574-3583, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1141418

ABSTRACT

OBJECTIVE: To test the hypotheses that blood biomarkers for nervous system injury, serum concentrations of neurofilament light chain protein (NfL) and glial fibrillary acidic protein (GFAp) can serve as biomarkers for disease severity in COVID-19 patients. METHODS: Forty-seven inpatients with confirmed COVID-19 had blood samples drawn on admission for assessing serum biomarkers of CNS injury by Single molecule array (Simoa), NfL and GFAp. Concentrations of NfL and GFAp were analyzed in relation to symptoms, clinical signs, inflammatory biomarkers and clinical outcomes. We used multivariate linear models to test for differences in biomarker concentrations in the subgroups, accounting for confounding effects. RESULTS: In total, 21% (n = 10) of the patients were admitted to an intensive care unit, and the overall mortality rate was 13% (n = 6). Non-survivors had higher serum concentrations of NfL (p < 0.001) upon admission than patients who were discharged alive both in adjusted analyses (p = 2.6 × 10-7) and unadjusted analyses (p = 0.001). The concentrations of NfL in non-survivors increased over repeated measurements; whereas, the concentrations in survivors were stable. The GFAp concentration was also significantly higher in non-survivors than survivors (p = 0.02). CONCLUSION: Increased concentrations of NfL and GFAp in COVID-19 patients on admission may indicate increased mortality risk. Measurement of blood biomarkers for nervous system injury can be useful to detect and monitor CNS injury in COVID-19.


Subject(s)
COVID-19 , Biomarkers , Glial Fibrillary Acidic Protein , Humans , Intermediate Filaments , Neurofilament Proteins , Prognosis , SARS-CoV-2
14.
Sci Rep ; 10(1): 21697, 2020 12 10.
Article in English | MEDLINE | ID: covidwho-1059940

ABSTRACT

In SARS-CoV-2 infection there is an urgent need to identify patients that will progress to severe COVID-19 and may benefit from targeted treatment. In this study we analyzed plasma cytokines in COVID-19 patients and investigated their association with respiratory failure (RF) and treatment in Intensive Care Unit (ICU). Hospitalized patients (n = 34) with confirmed COVID-19 were recruited into a prospective cohort study. Clinical data and blood samples were collected at inclusion and after 2-5 and 7-10 days. RF was defined as PaO2/FiO2 ratio (P/F) < 40 kPa. Plasma cytokines were analyzed by a Human Cytokine 27-plex assay. COVID-19 patients with RF and/or treated in ICU showed overall increased systemic cytokine levels. Plasma IL-6, IL-8, G-CSF, MCP-1, MIP-1α levels were negatively correlated with P/F, whereas combinations of IL-6, IP-10, IL-1ra and MCP-1 showed the best association with RF in ROC analysis (AUC 0.79-0.80, p < 0.05). During hospitalization the decline was most significant for IP-10 (p < 0.001). Elevated levels of pro-inflammatory cytokines were present in patients with severe COVID-19. IL-6 and MCP-1 were inversely correlated with P/F with the largest AUC in ROC analyses and should be further explored as biomarkers to identify patients at risk for severe RF and as targets for improved treatment strategies.


Subject(s)
COVID-19/blood , Chemokine CCL2/blood , Interleukin-6/blood , Respiratory Insufficiency/blood , SARS-CoV-2/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/complications , Female , Humans , Male , Middle Aged , Prospective Studies , Respiratory Insufficiency/etiology , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL